Chronic inflammation is considered as one of the challenging diseases, and overproduction of reactive oxygen species (ROS) is strongly related to the onset of chronic inflammation. Therefore, antioxidant and anti-inflammatory approaches are particularly becoming suitable treatment and prevention of inflammation. Curcumin (CUR), a main component of turmeric extract, is well known as an effective agent in both antioxidant and anti-inflammatory activities; however, there are still some limitations of its use including poor water solubility, low bioavailability, and oxidation by ROS. Nanotechnology has been used as a drug delivery system, which is a promising approach in overcoming the aforementioned drawbacks of CUR; hence, it improves the antioxidant and anti-inflammatory effects of conventional medications. In this research, silica-containing redox nanoparticles (siRNP) were designed with the size of several tens of nanometers, prepared by self-assembly of an amphiphilic block copolymer consisting of drug absorptive silica moiety and ROS-scavenging nitroxide radical moiety in the hydrophobic segment. CUR was simply encapsulated into siRNP through the dialysis method, creating CUR-loaded siRNP (CUR@siRNP), which significantly improved the water solubility of CUR. The efficient antioxidant activity and anti-inflammatory effect of CUR@siRNP in vitro were also improved via 2,2-diphenyl-1-picrylhydrazyl assay and lipopolysaccharide-induced macrophage cell line activation, respectively. Oral administration of CUR@siRNP showed improvement in pharmacokinetic profile in vivo including AUC and Cmax values as compared to free CUR. Furthermore, the anti-inflammatory effect of nanoformulation was investigated in the colitis mouse model induced by dextran sodium sulfate.