The present study was undertaken to analyze the roles of brain cations and of the blood-brain barrier (BBB) to albumin in the development of ischemic brain edema. Using the rat middle cerebral artery (MCA) occlusion model, changes in the brain water, sodium, and potassium contents were followed for a period of seven days. The permeability of the BBB to proteins was also followed by 125I-albumin transfer from the blood into the brain. A significant edema developed as early as three hours after MCA occlusion. This progressed rapidly to reach a maximum on the third day, gradually regressing thereafter. The increase in the brain water contents showed a parallel time course to the increase in the sodium and decrease in the potassium contents. A significant increase in the BBB permeability to albumin occurred 72 hours after MCA occlusion. However, there was no correlation between the brain water content and BBB permeability to albumin in the hemispheres studied 72 hours after MCA occlusion. The correlation between the brain water and sodium contents was not clear during the first six hours, but became highly significant thereafter. The data suggest that an increase in the BBB permeability to sodium occurred 12-48 hours after MCA occlusion, which, together with an antecedent intracellular shift of sodium, resulted in a massive influx of water and sodium into the brain. The BBB permeability change to sodium, not to proteins, seems to play a predominant role in the pathogenesis underlying ischemic brain edema.