The challenges of designing simple, reliable, and high sensitivity graviinertial sensors are investigated. The sensor comprises a proof mass (PM) and is fixed with the housing by the elastic torsion suspension. PM makes small rotations under the action of gravitational forces or inertial forces.The distinctive features of the sensor are that the differential electrostatic system provides simultaneous reading of the desired signal and a control the torsional rigidity of suspension. In addition, the PM's rotational angular velocity transforms in the alternating current flowing through the capacitors. The presence of аlternating current (AC) voltage sources allows to get the parametric amplification of AC and significantly to improve the sensitivity of the sensor. In the simplest case, the sensor does not contain any feedback circuits.As an example, calculations of the micromechanical linear accelerations confirm that the periodic modulation of the coefficient of elastic stiffness of the suspension can significantly increase the sensitivity in the low frequency range, even in the absence of parametric resonance.Conditions for suppressions of background current participating in the output signal from a parametric pumping due to the asymmetry of the differential circuits are set. The frequency characteristics calculations of the sensor were carried out. It is expected, that the proposed sensor design ensures minimum noise level, which can be achievable in the graviinertial sensors. This design and the constructed theory can serve as a basis for creating a wide range of graviinertial devices operating on a movable base, for example, linear and angular accelerometer, gravity gradiometer, gravimeters, and inclinometers, which can be realized in the hybrid and in the micromechanical versions.