Background: Orbital floor fractures (OFFs) represent an interesting chapter in maxillofacial surgery, and one of the main challenges in orbit reconstruction is shaping and cutting the precise contour of the implants due to its complex anatomy. Objective: The aim of the retrospective study was to demonstrate, through pre- and postoperative volumetric measurements of the orbit, how the use of a preformed titanium mesh based on the stereolithographic model produced with 3D printers (“In-House” reconstruction) provides a better reconstruction volumetric compared to the intraoperatively shaped titanium mesh. Materials and Methods: The patients with OFF enrolled in this study were divided into two groups according to the inclusion criteria. In Group 1 (G1), patients surgically treated for OFF were divided into two subgroups: G1a, patients undergoing orbital floor reconstruction with an intraoperatively shaped mesh, and G1b, patients undergoing orbital floor reconstruction with a preoperative mesh shaped on a 3D-printed stereolithographic model. Group 2 (G2) consisted of patients treated for other traumatic pathologies (mandible fractures and middle face fractures not involving orbit). Pre- and postoperative orbital volumetric measurements were performed on both G1 and G2. The patients of both groups were subjected to the measurement of orbital volume using Osirix software (Pixmeo SARL, CH-1233 Bernex, Switzerland) on the new CT examination. Both descriptive (using central tendency indices such as mean and range) and regressive (using the Bravais–Pearson index, calculated using the GraphPad program) statistical analyses were performed on the recorded data. Results: From 1 January 2017 to 31 December 2021, of the 176 patients treated for OFF at the “Magna Graecia” University Hospital of Catanzaro 10 fulfilled the study’s inclusion criteria: 5 were assigned to G1a and 5 to G1b, with a total of 30 volumetric measurements. In G2, we included 10 patients, with a total of 20 volumetric measurements. From the volumetric measurements and statistical analysis carried out, it emerged that the average of the volumetric differences of the healthy orbits was ±0.6351 cm3, the standard deviation of the volumetric differences was ±0.3383, and the relationship between the treated orbit and the healthy orbit was linear; therefore, the treated orbital volumes tend to approach the healthy ones after surgical treatment. Conclusion: This study demonstrates that if the volume is restored within the range of the standardized mean, the diplopia is completely recovered already after surgery or after one month. For orbital volumes that do not fall within this range, functional recovery could occur within 6 months or be lacking. The restoration of the orbital volume using pre-modeled networks on the patient’s anatomical model, printed internally in 3D, allows for more accurate reconstructions of the orbital floor in less time, with clinical advantages also in terms of surgical timing.