Understanding the atmospheric conditions in remote areas contributes to assessing local weather phenomena. Obtaining vertical profiles of the atmosphere in isolated locations can introduce significant challenges for the deployment and maintenance of equipment, as well as regulatory obstacles. Here, we assessed the potential of consumer drones equipped with lightweight atmospheric sensors to collect vertical meteorological profiles off One Tree Island (Great Barrier Reef), located approximately 85 km off the east coast of Australia. We used a DJI Matrice 300 drone with two InterMet Systems iMet-XQ2 UAV sensors, capturing data on atmospheric pressure, temperature, relative humidity, and wind up to an altitude of 1500 m. These flights were conducted three times per day (9 a.m., 12 noon, and 3 p.m.) and compared against ground-based weather sensors. Over the Austral summer/autumn, we completed 72 flights, obtaining 24 complete sets of daily measurements of atmospheric characteristics over the entire vertical profile. On average, the atmospheric temperature and dewpoint temperature were significantly influenced by the time of sampling, and also varied among days. The mean daily temperature and dewpoint temperature reached their peaks at 3 p.m., with the temperature gradually rising from its morning low. The mean dewpoint temperature obtained its lowest point around noon. We also observed wind speed variations, but changes in patterns throughout the day were much less consistent. The drone-mounted atmospheric sensors exhibited a consistent warm bias in temperature compared to the reference weather station. Relative humidity showed greater variability with no clear bias pattern, indicating potential limitations in the humidity sensor’s performance. Microscale temperature inversions were prevalent around 1000 m, peaking around noon and present in approximately 27% of the profiles. Overall, the drone-based vertical profiles helped characterise atmospheric dynamics around One Tree Island Reef and demonstrated the utility of consumer drones in providing cost-effective meteorological information in remote, environmentally sensitive areas.