2021
DOI: 10.20944/preprints202105.0312.v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

The Steelmaking Process Parameter Optimization with a Surrogate Model Based on Convolutional Neural Networks and the Firefly Algorithm

Abstract: High-strength low-alloy steels (HSLAs) are widely used in the structural body components of many domestic motor vehicles owing to their better mechanical properties and greater resistance. The real production process of HSLA steelmaking can be regarded as a model that builds on the relationship between process parameters and product quality attributes. A surrogate modeling method is used, and the resulting production process model can be applied to predict the optimal manufacturing process parameters. We used … Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 11 publications
0
0
0
Order By: Relevance