Although uncontrolled proliferation is a distinguishing property of a tumor as a whole, the individual cells that make up the tumor exhibit considerable variation in many properties, including morphology, proliferation kinetics, and the ability to initiate tumor growth in transplant assays. Understanding the molecular and cellular basis of this heterogeneity has important implications in the design of therapeutic strategies. The mechanistic basis of tumor heterogeneity has been uncertain; however, there is now strong evidence that cancer is a cellular hierar-
IntroductionTumors from different patients, whether leukemic or solid, exhibit significant heterogeneity in terms of morphology, cell surface markers, genetic lesions, cell proliferation kinetics, and response to therapy. Heterogeneity of all these features is also seen within an individual tumor that is clonal (ie, initiated from a single cell). Although individual cells of a tumor all share common genetic aberrations reflective of their clonal origin, single-cell analysis has shown the existence of variation in genetic and epigenetic abnormalities between different cells or locations within a tumor. The cellular and molecular basis for this heterogeneity represents a fundamental problem that has interested cancer researchers for many decades. One possible explanation is that all tumor cells could be biologically equivalent and heterogeneity derives from extrinsic or intrinsic influences that result in random or stochastic responses. Alternatively, it is possible that the tumor is a caricature of normal tissue development and retains hierarchical organization with (cancer) stem cells at the apex. 1 This review will focus on 50 years of hematology research that played a role in garnering evidence to support the hierarchy model.There is mounting evidence from cell purification studies that a subset of cells, termed cancer stem cells (CSCs), or cancerinitiating cells, that are distinct from the bulk of the tumor are responsible for long-term maintenance of tumor growth in several cancers. 2 Evidence is strongest for the acute leukemias, although recent studies have identified the existence of CSCs in an increasingly longer list of solid tumors, including brain, breast, and colon. 3 This conceptual shift has important implications, not only for researchers seeking to understand mechanisms of tumor initiation and progression but also for developing and evaluating effective anticancer therapies. Although the clinical relevance of CSCs beyond experimental models is still lacking, the high frequency of relapse after conventional cytotoxic chemotherapies predicts that CSCs survive standard treatments. Many papers, reviews, and funding bodies are making strong predictions that targeting CSCs more effectively will lead to improved patient outcomes. Indeed, there has been almost breathless excitement that this "new" field of CSC biology will solve the stubbornly high relapse rates that continue to exist for many cancers. However, stem cell concepts and how they apply...