2015
DOI: 10.1016/j.stamet.2015.06.002
|View full text |Cite
|
Sign up to set email alerts
|

The step-stress tampered failure rate model under interval monitoring

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
9
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 11 publications
(9 citation statements)
references
References 42 publications
0
9
0
Order By: Relevance
“…As in the works of Kateri and Kamps and Bobotas and Kateri, the cdf of the lifetime of a test unit under the FR‐based SSALT model, type‐I censored at τ s , takes the form Gfalse(tfalse)= {array1expg1(t)/ϑ1,0<tτ1,array1expi=1k1gi+1(τi)ϑi+1gi(τi)ϑiexp{gk(t)/ϑk},arrayτk1<tτk,2ks. Under the distributional assumption , the hazard rate at the i th stress level is hifalse(tfalse)=sans-serifgifalse(tfalse)false/ϑi. Thus, model reduces to the TFR model if the function sans-serifgi is the same over all stress levels, ie, sans-serifgi=sans-serifg, i = 1,…, s .…”
Section: The Interval Monitored Fr‐based Step‐stress Modelmentioning
confidence: 99%
See 4 more Smart Citations
“…As in the works of Kateri and Kamps and Bobotas and Kateri, the cdf of the lifetime of a test unit under the FR‐based SSALT model, type‐I censored at τ s , takes the form Gfalse(tfalse)= {array1expg1(t)/ϑ1,0<tτ1,array1expi=1k1gi+1(τi)ϑi+1gi(τi)ϑiexp{gk(t)/ϑk},arrayτk1<tτk,2ks. Under the distributional assumption , the hazard rate at the i th stress level is hifalse(tfalse)=sans-serifgifalse(tfalse)false/ϑi. Thus, model reduces to the TFR model if the function sans-serifgi is the same over all stress levels, ie, sans-serifgi=sans-serifg, i = 1,…, s .…”
Section: The Interval Monitored Fr‐based Step‐stress Modelmentioning
confidence: 99%
“…Following the work of Bobotas and Kateri and using the notation alignleftalign-1u10:=align-2v10:=w10:=0,align-1uij:=align-2uij(β0,β1):=k=1i1gk(τk)gk(τk1)exp(β0+β1xk)+gi(τij)gi(τi1)exp(β0+β1xi), we have 1G(τij)=exp(uij(β0,β1))for alli=1,,s, and pij:=P(τi,j1<Tτ…”
Section: Non‐conjugate Bayesian Analysismentioning
confidence: 99%
See 3 more Smart Citations