The behind‐plate overpressure effect by a reactive material projectile with a density of 7.7 g cm−3 was investigated by ballistic impact and sealed chamber tests. The reactive projectile was launched onto the initially sealed test chamber with a 2024‐T3 aluminum cover plate with a thickness of 3 mm, 6 mm, and 10 mm, respectively. Moreover, the overpressure signals in the test chamber were recorded by a pressure sensor and a data acquisition system. The experimental results show that the behind‐plate overpressure effect is significantly influenced by plate thickness and impact velocity. For a given plate thickness, the peak overpressure in the test chamber shows an increasing trend with increase of impact velocity. However, for a given impact velocity, when impacting the 6 mm thick aluminum plate, the peak overpressure measured and the impulse delivered to chamber are higher than the values recorded for the 3 mm and 10 mm thick aluminum plates. As such, it is inferred that there is an optimum plate thickness to maximize the behind‐plate overpressure effect by reactive projectile.