The aim of this work is to develop a stochastic multiscale model for polycrystalline materials, which accounts for the uncertainties in the micro-structure. At the finest scale, we model the micro-structure using a random Voronoï tessellation, each grain being assigned a random orientation. Then, we apply a computational homogenization procedure on statistical volume elements to obtain a stochastic characterization of the elasticity tensor at the meso-scale. A random field of the meso-scale elasticity tensor can then be generated based on the information obtained from the SVE simulations. Finally, using a stochastic finite element method, these meso-scale uncertainties are propagated to the coarser scale. As an illustration we study the resonance frequencies of MEMS micro-beams made of poly-silicon materials, and we show that the stochastic multiscale approach predicts results in agreement with a Monte Carlo analysis applied directly on the fine finite-element model, i.e. with an explicit discretization of the grains.