This paper is a continuation of Part I of this project, where we developed a new local well-posedness theory for nonlinear stochastic PDEs with Gaussian noise. In the current Part II we consider blow-up criteria and regularization phenomena. As in Part I we can allow nonlinearities with polynomial growth and rough initial values from critical spaces. In the first main result we obtain several new blow-up criteria for quasi- and semilinear stochastic evolution equations. In particular, for semilinear equations we obtain a Serrin type blow-up criterium, which extends a recent result of Prüss–Simonett–Wilke (J Differ Equ 264(3):2028–2074, 2018) to the stochastic setting. Blow-up criteria can be used to prove global well-posedness for SPDEs. As in Part I, maximal regularity techniques and weights in time play a central role in the proofs. Our second contribution is a new method to bootstrap Sobolev and Hölder regularity in time and space, which does not require smoothness of the initial data. The blow-up criteria are at the basis of these new methods. Moreover, in applications the bootstrap results can be combined with our blow-up criteria, to obtain efficient ways to prove global existence. This gives new results even in classical $$L^2$$
L
2
-settings, which we illustrate for a concrete SPDE. In future works in preparation we apply the results of the current paper to obtain global well-posedness results and regularity for several concrete SPDEs. These include stochastic Navier–Stokes equations, reaction– diffusion equations and the Allen–Cahn equation. Our setting allows to put these SPDEs into a more flexible framework, where less restrictions on the nonlinearities are needed, and we are able to treat rough initial values from critical spaces. Moreover, we will obtain higher-order regularity results.