In May 2018, the University of Denver repeated on-road optical remote sensing measurements at two locations in Lynwood, CA. Lynwood area vehicle tailpipe emissions were first surveyed in 1989 and 1991 because the area suffered from a large number of carbon monoxide (CO) air quality violations. These new measurements allow for the estimation of fuel-specific CO and total hydrocarbon (HC) emissions reductions, changes in the longevity of emission-control components, and the prevalence of high emitters in the current fleet. Since 1989 CO emissions decreased approximately factors of 10 (120 ± 8 to 12.3 ± 0.2 gCO/kg of fuel) and 20 (210 ± 8 to 10.4 ± 0.4 gCO/kg of fuel) at our I-710/Imperial Highway and Long Beach Blvd. sites, respectively. These reductions are also reflected in the local ambient air measurements. Tailpipe HC emissions have decreased by a factor of 25 (50 ± 4 to 2.1 ± 0.3 gHC/kg of fuel) since 1991 at the Long Beach Blvd. location. The decreases are so dramatic that the vast majority of vehicles now have HC measurements that are indistinguishable from zero. The decreases have increased the skewedness of the emissions distribution with the 99th percentile now responsible for more than 37% (CO) and 28% (HC) of the totals. Ammonia emissions collected in 2018 at both Lynwood locations peak with 20-year-old vehicles (1998 models), indicating long lifetimes for catalytic converters. In 1989 and 1991, the on-road Lynwood fleets had significantly higher emissions than fleets observed in other locations within the South Coast Air Basin. The 2018 fleets now have means and emissions by model year that are consistent with those observed at other sites in Los Angeles and the U.S. This indicates that modern vehicle combustion management and after-treatment systems are achieving their goals regardless of community income levels. Implications: Recent on-road vehicle emission measurements at two locations in the Lynwood, CA area, first visited in 1989, found significant fuel specific CO and HC emission reductions. CO emissions have decreased by a factor of 10 and 20 at each location and HC emissions have declined by a factor of 25. This has increased the skewedness in both species emissions distribution. The 2018 fleets have means and emissions by model year that are now consistent with those observed at other U.S. sites indicating that modern vehicle emissions control advancements are achieving their goals regardless of community income levels.