We investigate the charm sector of the nucleon structure phenomenologically, using the most up-to-date global QCD analysis. Going beyond the common assumption of purely radiatively generated charm, we explore possible degrees of freedom in the parton parameter space associated with nonperturbative (intrinsic) charm in the nucleon. Specifically, we explore the limits that can be placed on the intrinsic charm (IC) component, using all relevant hard-scattering data, according to scenarios in which the IC has a form predicted by light-cone wave function models; or a form similar to the light sea-quark distributions. We find that the range of IC is constrained to be from zero (no IC) to a level 2-3 times larger than previous model estimates. The behaviors of typical charm distributions within this range are described, and their implications for hadron collider phenomenology are briefly discussed. *