The fundamental essence of life is based on process of interaction between nucleic acids and proteins. In a prebiotic world, amino acids, peptides, ions, and other metabolites acted in protobiotic routes at the same time on which RNAs performed catalysis and self-replication. Nevertheless, it was only when nucleic acids and peptides started to interact together in an organized process that life emerged. First, the ignition was sparked with the formation of a Peptidyl Transferase Center (PTC), possibly by concatenation of proto-tRNAs. This molecule that would become the catalytic site of ribosomes started a process of self-organization that gave origin to a protoorganism named FUCA, a ribonucleic ribosomal-like apparatus capable to polymerize amino acids. In that sense, we review hypotheses about the origin and early evolution of the genetic code. Next, populations of open biological systems named progenotes were capable of accumulating and exchanging genetic material, producing the first genomes. Progenotes then evolved in two paths: some presented their own ribosomes and others used available ribosomes in the medium to translate their encoded information. At some point, two different types of organisms emerged from populations of progenotes: the ribosome-encoding organisms (cells) and the capsid-encoding organisms (viruses).