From the historical roots of metalworking to the forefront of modern nanotechnology, functional materials have played a pivotal role in transforming societies, and their influence is poised to persist into the future. Encompassing a wide array of solid-state materials, spanning semiconductors to polymers, molecular crystals to nanoparticles, functional materials find application in critical sectors such as electronics, computers, information, communication, biotechnology, aerospace, defense, environment, energy, medicine and consumer products. This feature article delves into diverse instances of functional materials, exploring their structures, their properties and the underlying mechanisms that contribute to their outstanding performance across fields like batteries, photovoltaics, magnetics and heterogeneous catalysts. The field of structural sciences serves as the cornerstone for unraveling the intricate relationship between structure, dynamics and function. Acting as a bridge, it connects the fundamental understanding of materials to their practical applications.