Bulk polytetra uoroethylene (PTFE) foam is a great potential oil-water separation material, owing to the high hydrophobicity and lipophilicity property. However, the technique of fabricating PTFE foam with low cost, controllable porosity and high mechanical strength remains an urgent requirement due to its high chemical inertness induced limitation. A kind of bulk PTFE foam material is prepared by cold pressing cosintering method, employing sodium chloride (NaCl) as pore forming agent. SEM measurements reveal that the size and distribution of pore structure are mainly determined by the particle size and content of NaCl, because the migration and diffusion behaviors of PTFE particles suffer from more inhibition induced by increased NaCl particles during sintering. The PTFE foam with uniformly distributed pore structures can be obtained from composite mixed with 70 wt% NaCl and 30 wt% PTFE, with a low thermal conductivity as low as 0.069 W/(m•K). With the decrease of PTFE content in raw composite, the density and mechanical properties of PTFE foam gradually declines. However, the tensile strength remains as low as 0.2 MPa, with an elongation rate of 21%, which guarantees the required mechanical strength avoiding being broken when use as a bulk oil absorption material. Remarkably, the PTFE foam shows a strong hydrophobicity, with a mean water contact angle of 137°, and separation e ciency more than 90%. The proposed bulk PTFE foam with low manufacturing cost and stable chemical and mechanical properties will provide data and theoretical support for the material applied in oil/water separation and thermalprotective coating.