Several enzymes catalyze much of the processes that exist in the soil. Enzymes in polluted soils are usually less active due to their exposure to heavy metals. The main goal of this study was to see how bioavailable types of Cd affected the behavior of catalase, urease, and dehydrogenases, as well as to compare the findings from naturally and artificially polluted samples. An experiment was conducted on two types of farmland (garden) soil: natural soil and soil that had been chemically polluted with Cd. The total content of heavy metal graded these soils as very highly polluted with Cd. The experiment was repeated four times to test the effects of increasing concentration and days (time). Extracellular enzymes from farmland performed enzymatic activity tests that lasted 6 to 29 days after soil sampling. After 0, 5, 10, 20, 30, and 45 days of incubation, soil samples were taken for testing respectively. However, even though no nutrient was added, dehydrogenase and urease activity increased as Cd concentration increased from 0 to 5 mg/L as the days passed. This is a result of enzymes engaging in respiratory and other living activities because of the low cadmium concentration and respiratory soil properties. However, there were significant variations in enzyme activity between naturally polluted and artificially contaminated soils. Dehydrogenases, Urease, and Catalase all showed a common pattern of enzyme sensitivity, which could be ordered as Dehydrogenase > Urease > Catalase. Dehydrogenase enzyme activity has been discovered to be more Cd resistant.