The first part of this paper provides a comprehensive and self-contained account of the interrelationships between algebraic properties of varieties and properties of their free algebras and equational consequence relations. In particular, proofs are given of known equivalences between the amalgamation property and the Robinson property, the congruence extension property and the extension property, and the flat amalgamation property and the deductive interpolation property, as well as various dependencies between these properties. These relationships are then exploited in the second part of the paper in order to provide new proofs of amalgamation and deductive interpolation for the varieties of lattice-ordered abelian groups and MV-algebras, and to determine important subvarieties of residuated lattices where these properties hold or fail. In particular, a full description is given of all subvarieties of commutative GMV-algebras possessing the amalgamation property.