2019
DOI: 10.2140/ant.2019.13.2103
|View full text |Cite
|
Sign up to set email alerts
|

The structure of correlations of multiplicative functions at almost all scales, with applications to the Chowla and Elliott conjectures

Abstract: We study the asymptotic behaviour of higher order correlations E n≤X/d g 1 (n + ah 1 ) · · · g k (n + ah k ) as a function of the parameters a and d, where g 1 , . . . , g k are bounded multiplicative functions, h 1 , . . . , h k are integer shifts, and X is large. Our main structural result asserts, roughly speaking, that such correlations asymptotically vanish for almost all X if g 1 · · · g k does not (weakly) pretend to be a twisted Dirichlet character n → χ(n)n it , and behave asymptotically like a multip… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

3
20
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
5
3

Relationship

1
7

Authors

Journals

citations
Cited by 22 publications
(23 citation statements)
references
References 31 publications
3
20
0
Order By: Relevance
“…, a ℓ (n) are distinct. Hence, Theorem 4.7 applies and shows that in proving (27) we can assume that the system we work with is (Z k , µ k , T ) for some k ∈ N. We conclude the reduction as in the previous proposition. Proof.…”
Section: 4supporting
confidence: 58%
See 2 more Smart Citations
“…, a ℓ (n) are distinct. Hence, Theorem 4.7 applies and shows that in proving (27) we can assume that the system we work with is (Z k , µ k , T ) for some k ∈ N. We conclude the reduction as in the previous proposition. Proof.…”
Section: 4supporting
confidence: 58%
“…Recently, a version involving logarithmic averages was established for ℓ = 2 by Tao [23] and for all odd values of ℓ by Tao and Teräväinen [25,26]. Similar results are also known for Cesàro averages on almost all scales [27]. But even in its logarithmic form, the conjecture remains open for all even ℓ ≥ 4.…”
Section: Introduction and Main Resultsmentioning
confidence: 67%
See 1 more Smart Citation
“…We remark that Corollary 1.5 is related to a recent result of Tao and Teräväinen [26] according to which Chowla's conjecture holds for "most" subsequences. However, given a particular subsequence {N n k } their result cannot guarantee the existence of even one subsequence of {N n k } along which Chowla would hold.…”
supporting
confidence: 54%
“…. , h k , the ordinary Chowla conjecture (1) implies its logarithmically averaged counterpart (3); however there does not seem to be any easy way to reverse this implication 2 ; see however [43].…”
Section: Introductionmentioning
confidence: 97%