Abstract. We obtain a number of consequences of the theorem on the automatic continuity of locally bounded finite-dimensional representations of connected Lie groups on the derived subgroup of the group, as well as an analogue of Lie's theorem for (not necessarily continuous) finite-dimensional representations of connected soluble locally compact groups. In particular, we give a description of connected Lie groups admitting a (not necessarily continuous) faithful locally bounded finitedimensional representation; as it turns out, such groups are linear. Furthermore, we give a description of the intersection of the kernels of continuous finite-dimensional representations of a given connected locally compact group, obtain a generalization of Hochschild's theorem on the kernel of the universal representation in terms of locally bounded (not necessarily continuous) finite-dimensional linear representations, and find the intersection of the kernels of such representations for a connected reductive Lie group.