Serine racemase (SR) is the only identified enzyme in mammals responsible for isomerization of L-serine to D-serine, a co-agonist at NMDA receptors in the forebrain. Our previous data reported that an apparent SR dimer resistant to SDS and β-mercaptoethanol was elevated in microglial cells after proinflammatory activation. Because the activation of microglia is typically associated with an oxidative burst, oxidative cross-linking between SR subunits was speculated. In this study, an siRNA technique was employed to confirm the identity of this SR dimer band. The oxidative species potentially responsible for the cross-linking was investigated with recombinant SR protein. The data indicate that nitric oxide, peroxynitrite, and hydroxyl radical were the likely candidates, while superoxide and hydrogen peroxide per se failed to contribute. Furthermore, the mechanism of formation of SR dimer by peroxynitrite oxidation was studied by mass spectrometry. A disulfide bond between Cys6 and Cys113 was identified in both SIN-1 treated SR monomer and dimer. Activity assays indicated that SIN-1 treatment decreased SR activity, confirming our previous conclusion that noncovalent dimer is the most active form of SR. These findings suggest a compensatory feedback whereby the consequences of neuroinflammation might dampen D-serine production to limit excitotoxic stimulation of NMDA receptors.