Several psychiatric disorders are associated with white matter defects, suggesting that oligodendrocyte (OL) abnormalities underlie some aspects of these diseases. Neuregulin 1 (NRG1) and its receptor, erbB4, are genetically linked with susceptibility to schizophrenia and bipolar disorder. In vitro studies suggest that NRG1-erbB signaling is important for OL development. To test whether erbB signaling contributes to psychiatric disorders by regulating the structure or function of OLs, we analyzed transgenic mice in which erbB signaling is blocked in OLs in vivo. Here we show that loss of erbB signaling leads to changes in OL number and morphology, reduced myelin thickness, and slower conduction velocity in CNS axons. Furthermore, these transgenic mice have increased levels of dopamine receptors and transporters and behavioral alterations consistent with neuropsychiatric disorders. These results indicate that defects in white matter can cause alterations in dopaminergic function and behavior relevant to neuropsychiatric disorders.dopamine ͉ erbB receptor ͉ neuregulin ͉ schizophrenia ͉ white matter N euregulin 1 (NRG1), a growth factor essential for brain development, and erbB4, one of its receptors, are genetically linked to schizophrenia and bipolar disorder (1-4). A role for NRG1-erbB receptor signaling in psychiatric diseases is also supported by studies showing that expression levels or function of NRG1, erbB3, and erbB4 are altered in patient tissues (1,4,5). Moreover, mice with reduced levels of NRG1 or erbB4 exhibit behavioral alterations relevant to mental illness (6-9). Although the evidence linking this pathway and psychiatric disorders is strong, the mechanisms by which it contributes to these diseases remain unknown. NRG1-erbB signaling is important in neurons, astrocytes, and oligodendrocytes (OLs), but the specific cell types through which altered NRG1-erbB signaling contributes to these disorders is undefined.Significant alterations in white matter are found in schizophrenia, bipolar disorder, major depression, anxiety, and obsessivecompulsive disorder (10-14), and genes expressed by OLs have been linked with some of these diseases (15, 16). Interestingly, NRG1-erbB signaling regulates OL development in vitro (17), although this has not been shown in the intact organism.To determine whether erbB signaling plays a role in CNS myelination and whether disruption of this pathway in OLs produces defects related to human psychiatric disorders, we analyzed mice in which erbB signaling in OLs is blocked by expression of a dominant negative erbB receptor (DN-erbB4) (18). We show that alterations in erbB signaling lead to changes in OL morphology, number, and function in vivo. Moreover, these transgenic (Tg) mice have increased levels of functional dopamine transporters (DAT) and D1 receptors and exhibit behavioral alterations suggestive of neuropsychiatric disorders. Together, these results indicate that altered NRG1-erbB signaling in OLs may be a potential contributor to the pathogenesis of mental illness....