Spherical high density lipoprotein (sHDL), a key player in reverse cholesterol transport and the most abundant form of HDL, is associated with cardiovascular diseases. Small angle neutron scattering with contrast variation was used to determine the solution structure of protein and lipid components of reconstituted sHDL. Apolipoprotein A1, the major protein of sHDL, forms a hollow structure that cradles a central compact lipid core. Three apoA1 chains are arranged within the low resolution structure of the protein component as one of three possible global architectures: (i) a helical dimer with a hairpin (HdHp), (ii) three hairpins (3Hp), or (iii) an integrated trimer (iT) in which the three apoA1 monomers mutually associate over a portion of the sHDL surface. Cross-linking and mass spectrometry analyses help to discriminate among the three molecular models and are most consistent with the HdHp overall architecture of apoA1 within sHDL.Epidemiological studies firmly establish that circulating levels of high density lipoprotein (HDL) cholesterol and apolipoprotein A1 (apoA1), 2 the major protein constituent of HDL particles, are inversely associated with atherosclerotic heart disease risk (1-3). Moreover, genetic studies further confirm a strong mechanistic link between HDL and apoA1 and cardiovascular disease (4 -8). Defined by its buoyant density characteristics, HDL represent a heterogeneous group of particles with varied lipid composition and protein content that participate in diverse biological functions ranging from lipid transport to innate immune functions. For example, HDL serves as an acceptor of cholesterol from peripheral tissue macrophages and promotes lipid transport through delivery of cholesterol to the liver and steroidogenic tissues (9 -11). HDL also mediates systemic anti-inflammatory and anti-oxidant functions (12-14), and HDL-associated proteins can play critical host defense functions (15). ApoA1 represents nearly three-quarters of the protein content of HDL by mass, and it plays a central functional role in facilitating the numerous biological activities of HDL. Typically present at 2-4 molecules/particle depending upon the degree of HDL maturation, apoA1 serves as the fundamental structural element of the particle (16, 17) and is critical for specific interactions with proteins involved in HDL biogenesis (18, 19), maturation and remodeling (20,21), and recognition by target organ receptors (22,23).Because HDL can be generated in a relatively homogenous form, most structural studies of HDL have focused on reconstituted nascent HDL, a particle composed of two molecules of apoA1 associated with phospholipid and free cholesterol (16,17). Early small angle neutron scattering (SANS) and small angle x-ray scattering (SAXS) studies of nascent HDL particles were reported nearly 3 decades ago and are consistent with an outer protein layer relative to a central lipid core (24,25). Current structural models of nascent HDL have an anti-parallel apoA1 chain orientation and posit that the protein exists...