Mathematical modeling has been used to interpret anatomical and physiological data obtained from metabolic and hemodynamic studies aimed at investigating structure-function relationships in the vasculature of the lung, and how these relationships are affected by lung injury and disease. The indicator dilution method was used to study the activity of redox processes within the lung. A steadystate model of the data was constructed and used to show that pulmonary endothelial cells may play an important role in reducing redox active compounds and that those reduction rates can be altered with oxidative stress induced by exposure to high oxygen environments. In addition, a morphometric model NOT THE PUBLISHED VERSION; this is the author's final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation at the bottom of the page. 2 of the pulmonary vasculature was described and used to detect, describe,and predict changes in vascular morphology that occur in response to chronic exposure to low-oxygen environments, a common model of pulmonary hypertension. Finally, the model was used to construct simulated circulatory networks designed to aid in evaluation of competing hypotheses regarding the relative contribution of various morphological and biomechanical changes observed with hypoxia. These examples illustrate the role of mathematical modeling in the integration of the emerging metabolic, hemodynamic, and morphometric databases.
Proceedings of the IEEE,