Ion exchange of the sodium hydro sodalites [Na3(H2O)4]2-[Al3Si3O12]2 [Na4(H3O2)]2[Al3Si3O12]2 and [Na4(OH)]2[Al3Si3O12]2 with aqueous Pb(NO3)2 solutions yielded, whichever reactant sodalite phase was used, the same lead hydro sodalite, [Pb2(OH)-(H2O)3]2[Al3Si3O12]2. Thus, in the case of the non-basic reactant [Na3(H2O)4]2-[Al3Si3O12]2 an overexchange occurs with respect to the number of nonframework cationic charges. Rietveld structure refinement of the lead hydro sodalite based on powder X-ray diffraction data (cubic, a = 9.070 A, room temperature, space group P43n) revealed that the two lead cations within each polyhedral sodalite cage form an orientationally disordered dinuclear [Pb2(micro-OH)(micro-H2O)(H2O)2]3+ complex. Due to additional lead framework oxygen bonds the coordination environment of each metal cation (CN 3+3) is approximately spherical, and clearly the lead 6s electron lone pair is stereochemically inactive. This is also suggested by the absence of a small peak at 13.025 keV, attributed in other Pb2+-O compounds to an electronic 2p-6s transition, in the PbL3 edge XANES spectrum. 1H MAS NMR and FTIR spectra show that the hydrogen atoms of the aqua hydroxo complex (which could not be determined in the Rietveld analysis) are involved in hydrogen bonds of various strengths.