Background
Cashmere goats, as an important part of animal husbandry production, make outstanding contributions to animal fiber industry. In recent years, a great deal of research has been done on the molecular regulation mechanism of hair follicle cycle growth. However, there are few reports on the molecular regulation mechanisms of secondary hair follicle growth cycle in cashmere goats. In order to explore the changing regularity of wool follicle cycle and the role of key genes in wool follicle cycle of cashmere goats. we used transcriptome sequencing technique to sequence the skin of Inner Mongolia cashmere goats in different periods, Analyze the variation and difference of genes in the whole hair follicle cycle. And then, we verified the regulation mechanism of cashmere goat secondary hair follicle growth cycle by fluorescence quantitative PCR.
Results
As the result shows: growth period (March-September), regression period (September-December) and resting period (December-March). The results of differential gene analysis showed that March was considered the beginning of the cycle, and the difference of gene expression was the most significant. Cluster analysis of gene expression in the whole growth cycle further supported the key nodes of the three periods of villus growth, and the differential gene expression of keratin corresponding to the villus growth cycle further supported the results of tissue slices. Quantitative fluorescence analysis showed that KAP3-1, KRTAP 8-1 and KRTAP 24-1 genes had close positive correlation with the growth cycle of cashmere, and their regulation was consistent with the growth cycle of cashmere. However, there was a sequence of expression time, indicating that the results of cycle regulation made the growth of cashmere change.
Conclusion
The growth cycle of cashmere hair could be divided into three distinct periods: growth period (March-September), regression period (September-December) and resting period (December-March).March was considered the beginning of the cycle, KAP and KRTAP had close positive correlation with the growth cycle of cashmere, and their regulation was consistent with the growth cycle of cashmere. However, there was a sequence of expression time, indicating that the results of cycle regulation made the growth of cashmere change.