We study variants of the well-known Collatz graph, by considering the action
of the 3n+1 function on congruence classes. For moduli equal to powers of 2,
these graphs are shown to be isomorphic to binary De Bruijn graphs. Unlike the
Collatz graph, these graphs are very structured, and have several interesting
properties. We then look at a natural generalization of these finite graphs to
the 2-adic integers, and show that the isomorphism between these infinite
graphs is exactly the conjugacy map previously studied by Bernstein and
Lagarias. Finally, we show that for generalizations of the 3n+1 function, we
get similar relations with 2-adic and p-adic De Bruijn graphs.Comment: 9 pages, 8 figure