For a fixed prime p, let e p (n!) denote the order of p in the prime factorization of n!. Chen and Liu (2007) asked whether for any fixed m, one has {e p (n 2 !) mod m : n ∈ Z} = Z m and {e p (q!) mod m : q prime} = Z m . We answer these two questions and show asymptotic formulas for #{n < x : n ≡ a mod d, e p (n 2 !) ≡ r mod m} and #{q < x : q prime, q ≡ a mod d, e p (q!) ≡ r mod m}. Furthermore, we show that for each h 3, we have #{n < x : n ≡ a mod d, e p (n h !) ≡ r mod m} x 4/(3h+1) .