At the core of eukaryotic aerobic life, mitochondria function like “hubs” in the web of energetic and redox processes in cells. In the heart, these networks - extending beyond the complex connectivity of biochemical circuit diagrams and apparent morphology - exhibit collective dynamics spanning several spatio-temporal levels of organization, from the cell, to the tissue, and the organ. The network function of mitochondria, i.e. mitochondrial network energetics, represents an advantageous behaviour. Its coordinated action, under normal physiology, provides robustness despite failure in a few nodes, and improves energy supply toward a swiftly changing demand. Extensive diffuse loops, encompassing mitochondrialcytoplasmic reaction/transport networks, control and regulate energy supply and demand in the heart. Under severe energy crises, the network behaviour of mitochondria and associated glycolytic and other metabolic networks collapse, thereby triggering fatal arrhythmias.