We study, systematically, the properties of the supersymmetric AKNS (sAKNS) hierarchy. In particular, we discuss the Lax representation in terms of a bosonic Lax operator and some special features of the equations and construct the bosonic local charges as well as the fermionic nonlocal charges associated with the system starting from the Lax operator. We obtain the Hamiltonian structures of the system and check the Jacobi identity through the method of prolongation. We also show that this hierarchy of equations can equivalently be described in terms of a fermionic Lax operator. We obtain the zero curvature formulation as well as the conserved charges of the system starting from this fermionic Lax operator which suggests a connection between the two. Finally, starting from the fermionic description of the system, we construct the soliton solutions for this system of equations through Darboux-Bäcklund transformations and describe some open problems.