The evaluation of every electrocardiogram should also include an effort to interpret the QT interval to assess the risk of malignant arrhythmias and sudden death associated with an aberrant QT interval. The QT interval is measured from the beginning of the QRS complex to the end of the T-wave, and should be corrected for heart rate to enable comparison with reference values. However, the correct determination of the QT interval, and its value, appears to be a daunting task. Although computerized analysis and interpretation of the QT interval are widely available, these might well over- or underestimate the QT interval and may thus either result in unnecessary treatment or preclude appropriate measures to be taken. This is particularly evident with difficult T-wave morphologies and technically suboptimal ECGs. Similarly, also accurate manual assessment of the QT interval appears to be difficult for many physicians worldwide. In this review we delineate the history of the measurement of the QT interval, its underlying pathophysiological mechanisms and the current standards of the measurement of the QT interval, we provide a glimpse into the future and we discuss several issues troubling accurate measurement of the QT interval. These issues include the lead choice, U-waves, determination of the end of the T-wave, different heart rate correction formulas, arrhythmias and the definition of normal and aberrant QT intervals. Furthermore, we provide recommendations that may serve as guidance to address these complexities and which support accurate assessment of the QT interval and its interpretation.