Experimental and model results are presented to show that the so-called "nonleaker" emissions of volatile organics from valves and flanges probably proceed by a capillary mechanism. A capillary-flow model is formulated based on theoretical consideration and field data, and equations are derived which permit a test of the model under laboratory conditions. Model predictions are shown to be confirmed by an experimental study of emission from a valve. The results suggest some practical steps for reducing fugitive emissions of VOCs from valves and flanges: (1) the use of nonwetting and low surface energy packing and containment materials, (2) the use of a resilient, nonswelling or nonshrinking packing material, (3) the damping of vibrations and temperature or pressure cyclings, and (4) the application of a compressive stress just sufficient to produce small pore sizes in the packing but insufficient to harm the resiliency and life span of the packing.