Osseointegration, the first concept of biosis-abiosis intelligent interface, is primarily explained, and researches on the elucidation of osseointegration mechanism and titanium-tissue interface observation are reviewed to understand a concept to create biosis-abiosis intelligent interface. In addition, current status of surface treatment of metallic materials is reviewed. In particular, a gap between research level progress and commercialization in surface treatments is focused. Mechanical property, durability, and manufacturing process of surface layer formed on titanium by surface treatment, are significant to commercialize the treatment, while most of researches focuses only evaluation of biocompatibility and biofunction.
IntroductionExcellent biocompatibility and biofunction of ceramics and polymers are expected to show excellent properties as biomaterials; in fact many devices consisting of metals have been substituted by those consisting of ceramics and polymers. In spite of this event, over 70 % of implant devices in medical field including dentistry, especially over 95 % in orthopedics, still consist of metals, and this share is currently maintained, because of their high strength, toughness, and durability.On the contrary, a disadvantage of using metals as biomaterials is that they are typically artificial materials and have no biofunction. Therefore, metal surface naturally forms a clear interface against living tissue that works as a barrier to conduct biofunctions. To add biocompatibility and biofunction to metals, in other words, to create biosis-abiosis intelligent interface, surface treatment is essential,