2016
DOI: 10.1002/mana.201600118
|View full text |Cite
|
Sign up to set email alerts
|

The surjective hull of a polynomial ideal

Abstract: The aim of this paper is the study of surjective ideals of homogeneous polynomials between Banach spaces. To do so we define the surjective hull of a polynomial ideal and prove the main properties of this hull procedure. For a more comprehensive theory, new lifting properties of homogeneous polynomials are proved and applied to the description of the surjective hulls of the ideals of scriptI‐bounded polynomials and of composition polynomials ideals. Several applications are provided.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
1
0
7

Year Published

2020
2020
2021
2021

Publication Types

Select...
2
2

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(8 citation statements)
references
References 30 publications
0
1
0
7
Order By: Relevance
“…As a consequence of the successful theory of ideals of linear operators (operator ideals), ideals of continuous homogeneous polynomials between Banach spaces have been intensively studied since Pietsch [19] introduced the concept of ideals of multilinear operators. Contrary to the case of surjective polynomial ideals, which were thoroughly investigated in [2], injective polynomial ideals have not been studied yet. The aim of this note is to fill this gap.…”
Section: Introductionmentioning
confidence: 99%
“…As a consequence of the successful theory of ideals of linear operators (operator ideals), ideals of continuous homogeneous polynomials between Banach spaces have been intensively studied since Pietsch [19] introduced the concept of ideals of multilinear operators. Contrary to the case of surjective polynomial ideals, which were thoroughly investigated in [2], injective polynomial ideals have not been studied yet. The aim of this note is to fill this gap.…”
Section: Introductionmentioning
confidence: 99%
“…A principal referência para o tópico dos ideais sobrejetivos de polinômiosé o artigo [4], e a principal referência para o tópico dos polinômios I-limitadosé o artigo [2].…”
Section: Ideais Sobrejetivos De Polinômios Homogêneosunclassified
“…Em 1983, o próprio Pietsh esboçou a teoria de ideais de aplicações multilineares em [34]. Tal ideia foi imediatamente adaptada para polinômios homogêneos, desde então, uma vasta literatura no assunto tem sido produzida, recomendamos ao leitor as referências [2,3,4,10,12,13,14,26,30,31,34,41,44]. Nessa teoria, uma classe de grande destaque são os ideais de composição de polinômios (homogêneos), cuja importância decorre do fato de que muitas classes de polinômios que foram/são estudadas por sua própria importância, como por exemplo os polinômios de posto finito, compactos e fracamente compactos, são ideais de composição.…”
Section: Introductionunclassified
See 1 more Smart Citation
“…Seguindo a linha do que é feito no caso de ideais de operadores lineares em [20,35] e no caso de ideais de polinômios homogêneos em [10] e [35], definimos e estudamos nesta seção os germes sobrejetivos de ideais. Tanto para os germes sobrejetivos de ideais de operadores como para germes sobrejetivos de ideais de polinômios, estudamos suas envoltórias sobrejetivas e por meio destas caracterizamos os operadores/polinômios que pertencem aos ideais.…”
Section: Germes Sobrejetivosunclassified