Schistosomiasis commonly known as bilharzia is regarded by W.H.O as a neglected tropical disease. It affects the intestines and the urinary system preferentially, but can harm other systems in the body. The disease is a health concern among majority of the population in Mwea irrigation scheme in Kenya and indeed other tropical countries. This paper documents a deterministic analysis of the effectiveness of non-clinical approaches in the control of transmission of schistosomiasis in the region. A SIR based mathematical model that incorporates media campaigns as a control strategy of reducing transmission of the disease is used. The model considers behavior patterns of hosts as the main process of transmission of the disease. The dynamics of these processes is expressed in terms of ordinary differential equations deduced from the human behavior patterns that contribute to the spread of the disease. The reproduction number R0 and equilibrium points both DFE and EE are obtained. The stabilities of these equilibrium points are analyzed in reference to the reproduction number (R0). Secondary data is used in the mathematical model developed and in the prediction of the dynamics estimated in the model for a period of five years. Numerical simulation was carried out and results represented graphically. The results of the simulation show that the infection decreased from 75108 to about 35000 and the susceptible from 325142 to 50000 respectively in a period of five years. From the analysis, the DFE point is asymptotically stable when R_0<1.Sensitivity analysis of parameters was carried out using partial differentiation. The results show that the sensitivity index of most parameters are inversely proportional to R0 which will reduce schistosomiasis infection. From the results, incorporation of media campaigns as a control strategy significantly reduces transmission of the disease. The results will be useful to MOH to enhance media campaigns to prevent spread of schistosomiasis in Mwea Irrigation scheme and other endemic areas.