With the continuous development of the transformation of the “smart mine” in the mineral industry, the use of sensors in autonomous trucks has become very common. However, the driving of trucks causes the point cloud collected by through Light Detection and Ranging (LiDAR) to contain dust points, leading to a significant decline in its detection performance, which makes it easy for vehicles to have failures at the perceptual level. In order to solve this problem, this study proposes a LiDAR point cloud denoising method for the quantitative analysis of laser reflection intensity and spatial structure. This method uses laser reflectivity as the benchmark template, constructs the initial confidence level template and initially screens out the sparse dust point cloud. The results are analyzed through the Euclidean distance of adjacent points, and the confidence level in the corresponding template is reduced for rescreening. The experimental results show that our method can significantly filter dust point cloud particles while retaining the rich environmental information of data. The computational load caused by filtering is far lower than that of other methods, and the overall operation efficiency of the system has no significant delay.