T cells play a major role in immune defense against viral infections and diseases such as cancer. Accordingly, developing nanoparticle (NP) systems to effectively deliver therapeutics to T cells is of interest. However, NP-mediated delivery of drugs to T cells is challenging because of the nonphagocytic nature of T cells. To engage T cells and induce cellular internalization, NPs are typically decorated with specific receptor-targeting antibodies, often using laborious and costly procedures. Herein, we report that natural glycogen NPs (i.e., nanosugars) with different sizes (20−80 nm) and surface charges (neutral and positively charged) engage Jurkat T cells, undergo intracellular trafficking, and release encapsulated drug without the use of receptor-targeting antibodies. Specifically, glycogen−resveratrol constructs are employed to reactivate HIV-1 latently infected Jurkat T cells (J-Lat A2) and trigger proviral expression. Both neutral and positively charged glycogen NPs engage with J-Lat A2 cells. Large (84 ± 29 nm) and positively charged (23 ± 5 mV) NPs, denoted phytoglycogen-ethylenediamine (PG EDA ) NPs, readily associate with the cell membrane and are internalized (60%) in J-Lat A2 cells but remain confined in the endocytic vesicles, with moderate reactivation of latent HIV-1 (4.7 ± 0.5%). Conversely, small (21 ± 5 nm) and positively charged (10 ± 6 mV) NPs, bovine glycogen-EDA (BG EDA ) NPs, associate slowly with T cells but show nearly 100% internalization and efficient endosomal escape properties, resulting in 1.5-fold higher reactivation of latent HIV-1 in T cells. PG EDA NPs and BG EDA NPs are also internalized by primary human T cells (>90% cell association) and enable the transfection of mRNA, with BG EDA NPs showing a 2-fold higher transfection than PG EDA NPs. This work highlights the potential of BG EDA NPs for the effective intracellular delivery of small-molecule drugs and mRNA in T cells.