It is necessary to quantify the effects of flux on reactor pressure vessel steel embrittlement under neutron irradiation, if surveillance or high-flux test reactor data is used to predict vessel embrittlement occurring at lower fluxes. This is particularly important when considering embrittlement occurring during extended (60–80 years) operation for which there is no direct experience. Dedicated investigations are time-consuming and expensive even when only small flux-fluence ranges are investigated, so collating data from multiple campaigns is necessary to provide sufficient information to cover the wide range of fluxes required for vessel assessment in the long term. This paper collates and reviews such data. The review finds that flux dependences probably differ in sign and strength in different regimes (low flux and fluence, intermediate flux at low and high fluence, high flux at low and high fluence) with the regime limits affected by composition and temperature. The current understanding of diffusion processes and microstructural development are invaluable in interpreting the trends and limits. Many contradictory data sets were found, however, and not all contradictions could be dismissed as resulting from poor quality data. Suggestions are made for investigations to clarify the uncertainties. One wide-ranging model of flux effects, based on an extensive data set, is used to compare high-fluence data from different sources, to assess whether embrittlement rates accelerate after a high, threshold fluence. The model helps to identify experiments which investigated comparable flux-fluence-temperature regimes. The comparable data are split evenly between data sets supporting acceleration after a particular fluence and data sets contradicting it. The model identifies regimes in which further campaigns would clarify the causes of these contrasting observations.