Biofilms consist of groups of bacteria attached to surfaces and encased in a hydrated polymeric matrix. Bacteria in biofilms are more resistant to the immune system and to antibiotics than their free-living planktonic counterparts. Thus, biofilm-related infections are persistent and often show recurrent symptoms. The metal chelator EDTA is known to have activity against biofilms of gram-positive bacteria such as Staphylococcus aureus. EDTA can also kill planktonic cells of Proteobacteria like Pseudomonas aeruginosa. In this study we demonstrate that EDTA is a potent P. aeruginosa biofilm disrupter. In Tris buffer, EDTA treatment of P. aeruginosa biofilms results in 1,000-fold greater killing than treatment with the P. aeruginosa antibiotic gentamicin. Furthermore, a combination of EDTA and gentamicin results in complete killing of biofilm cells. P. aeruginosa biofilms can form structured mushroom-like entities when grown under flow on a glass surface. Time lapse confocal scanning laser microscopy shows that EDTA causes a dispersal of P. aeruginosa cells from biofilms and killing of biofilm cells within the mushroom-like structures. An examination of the influence of several divalent cations on the antibiofilm activity of EDTA indicates that magnesium, calcium, and iron protect P. aeruginosa biofilms against EDTA treatment. Our results are consistent with a mechanism whereby EDTA causes detachment and killing of biofilm cells.Biofilms consist of groups of bacteria attached to surfaces and encased in a hydrated polymeric matrix. Bacterial biofilms are abundant in the environment and are involved in several human bacterial infections (reviewed in references 11, 14, and 31). Of medical importance, biofilms can withstand host immune responses (19)(20)(21) and are much more resistant to antibiotic treatments than their nonattached, individual, free-living (planktonic) counterparts (28,36). For these reasons, biofilm infections are persistent, and individuals often show recurring symptoms following antibiotic therapy. One of the best-studied models for biofilm formation is the bacterium Pseudomonas aeruginosa (reviewed in references 27 and 30), which causes many types of infections, including biofilm-associated chronic lung infections in cystic fibrosis patients, acute ulcerative keratitis in users of extended-wear soft contact lenses, and bacteremia in severe-burn victims.The metal chelator EDTA has been shown to cause lysis, loss of viability, and increased sensitivity of planktonic Proteobacteria to a variety of antibacterial agents (reference 13; reviewed in references 25, 29, and 40). This has led to the use of EDTA as a preservative in many products. Little is known about the influence of EDTA on biofilms of Proteobacteria. Raad et al. (32,33) have shown that EDTA combined with minocycline is an effective treatment for microorganisms embedded in biofilms on catheter surfaces. Their studies focused on Staphylococcus epidermidis, Staphylococcus aureus, and Candida albicans; however, they also reported two cases of...