Three new quaternary scandium vanadium selenium/tellurium oxides, α-ScVSe2O8, β-ScVSe2O8, and ScVTe2O8 have been synthesized through hydrothermal and standard solid-state reactions. Although all three reported materials are stoichiometrically similar, they exhibit different crystal structures: α-ScVSe2O8 has a three-dimensional framework structure consisting of ScO6, VO6, and SeO3 groups. β-ScVSe2O8 reveals another three-dimensional framework composed of ScO7, VO5, and SeO3 polyhedra. ScVTe2O8 shows a layered structure with ScO6, VO4, and TeO4 polyhedra. Interestingly, the constituent cations, that is, Sc(3+), V(5+), Se(4+), and Te(4+) are all in a distorted coordination environment attributable to second-order Jahn-Teller (SOJT) effects. Complete characterizations including infrared spectroscopy, elemental analyses, thermal analyses, dipole moment calculation, and the magnitudes of out-of-center distortions for the compounds are reported. Transformation reactions suggest that α-ScVSe2O8 may change to β-ScVSe2O8, and then to Sc2(SeO3)3·H2O under hydrothermal conditions.