The mathematical model of the electron spectrum of a charged fullerene is constructed on the basis of the potential of a charged sphere and the spherically symmetric potential of an uncharged fullerene. The electron spectrum is defined as the solution of the spectral problem for the one-dimensional Schr\"odinger equation. For the numerical solution of the spectral problem, piecewise-linear finite elements are used. The computational algorithm was tested on the analytical solution of the problem of the spectrum of the hydrogen atom. For solution of matrix spectral problems, a free library for solving spectral problems of SLEPc is used. The results of calculations of the electron spectrum of a charged fullerene C60 are presented.