2022
DOI: 10.1002/jgt.22898
|View full text |Cite
|
Sign up to set email alerts
|

The (t−1) $(t-1)$‐chromatic Ramsey number for paths

Abstract: The following relaxation of the classical problem of determining the Ramsey number of a fixed graph has first been proposed by Erdős, Hajnal and Rado over 50 years ago. Given a graph G $G$ and an integer t ≥ 2 $t\ge 2$ determine the minimum number N $N$ such that in any t $t$‐coloured complete graph on N $N$ vertices there is a copy of G $G$ using only edges of some t − 1 $t-1$ colours. We determine the answer precisely when G $G$ is a path.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 28 publications
0
0
0
Order By: Relevance