The purpose of this study was to mathematically validate and clinically verify a finite element model (FEM) of the human mandible and to compare the functional deformation predicted by the model with that detected clinically. Mandibular surface strain, using 11 single strain gauges, and medial convergence (MC), using a custom-fabricated linear variable differential transformer (LVDT), were recorded in a dried human jaw. The mandible was treated with two endosseous implants, placed bilaterally in the premolar area, and mounted in a rig that simulated natural function of the jaw. Measurements were made in real time using a multichannel analogue/digital converter and a personal computer for data storage and analysis. A FEM of the mandible was constructed, using commercially available finite element software, based on CT scan images of the jaw. MC was predicted as the linear change in the orientation of the two implants in the horizontal plane. Predicted and measured values of MC ranged between 60 and 109 mm. The differences between the measured and predicted strain magnitudes were expressed as absolute percentages of the measured values and ranged between 3 and 18%. The limits of agreement between the predicted and measured strain values, as suggested by Bland and Altman (Lancet 1986; 1:307-310), were small enough for the predictions from the FEM to be considered clinically acceptable. The good agreement between the predicted and measured strain values indicates the accuracy of the present FEM. Finite element analysis is a powerful technique that provides a better insight into understanding the complex phenomena of mandibular functional deformation. 2006 Wiley Periodicals, Inc. J Biomed Mater Res 80A: [234][235][236][237][238][239][240][241][242][243][244][245][246] 2007