In this paper, an icosahedral non-body-centered model is presented to simulate the periodic structure of a general class of homogeneous particulate composites, by predicting the particle arrangement. This model yielded three different variations, which correspond to three different deterministic particle configurations. In addition, the concept of a boundary interphase between matrix and inclusions was taken into account. In this framework, the influence of particle vicinity on the thermomechanical properties of the overall material was examined in parallel with the concept of boundary interphase. The simultaneous consideration of these two basic influential factors constitutes the novelty of this work. Next, by the use of this advanced model, the authors derived a closed-form expression to estimate the thermal conductivity of this type of composite. To test the validity of the model, the theoretical predictions arising from the proposed formula were compared with experimental data found in the literature, together with theoretical results obtained from several accurate formulae derived from other workers, and an adequate accordance was observed.