Abstract:The blend of nanotechnology and material science is often beyond the scope of undergraduate laboratories. Through undergraduate research, graphite-intercalated compounds have been incorporated in the production of carbon-based nanostructures. Based on this work a series of exploratory exercises were designed for the undergraduate physical chemistry laboratory emphasizing nanostructure material science. This rapidly expanding area of science and technology can be introduced at an undergraduate level using a high temperature oven to produce nanostructure samples that are analyzed by Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy at research university laboratories, infrared spectroscopy, and a bomb calorimeter. In these experiments we use samples of pure graphite, fluorinated graphite, and lanthanum oxide to induce the formation of nanostructures. An overview of fullerenes, nanotubes, boron nitride and Si nanostructures, other carbon forms, graphite-intercalated compounds, and the storage of hydrogen in nanotubes are provided in an appendix. Several extensions of the laboratory are proposed.