Highly crystalline cellulose samples from green algae (cellulose I) and mercerized ramie (cellulose II) were treated with anhydrous hydrazine and the resulting complexes were analyzed by synchrotron X-ray diffraction and thermogravimetry. Cellulose I-hydrazine complex could be fully described by a two-chain monoclinic unit cell, a = 0.879 nm, b = 1.076 nm, c = 1.038 nm, and c = 122.0°, with space group P2 1 . Cellulose II-hydrazine complex prepared from mercerized ramie gave a different two-chain monoclinic unit cell, a = 1.042 nm, b = 1.046 nm, c = 1.038 nm, c = 129.7°, also with space group P2 1 . Though having different crystal structures, the number of hydrazine molecules per glucopyranoside residue was 0.82 for cellulose I-complex and 0.93 for cellulose II-complex, probable stoichiometric value of 1.0. Hydrazine could be extracted from the complexes by organic solvents retaining the crystalline orders, resulting in the allomorphic conversion to cellulose III I and cellulose III II , both having non-staggered chain arrangements. These features are similar to those of celluloseethylenediamine complexes.