Exploratory computational studies on annulenes with planar, Möbius, and two‐twist topologies have resulted in new mechanisms to explain facile thermal configuration change (cis‐trans isomerization) for medium‐sized annulenes ([12]‐ to [16]annulene). Möbius π‐bond shifting through both aromatic and antiaromatic transition states, two‐twist π‐bond shifting, and planar nondegenerate π‐bond shifting can all be invoked to explain experimental results. Moreover, a simple bond‐shift rule, which is based on the change in number of trans CC double bonds (Δtrans), was developed that predicts the topology of the transition state(s) necessary to effect the desired cis‐trans isomerization. The bond‐shift rule was also applied to configuration change in dehydro[12]annulene. Finally, extensive investigation of the [14]annulene hypersurface revealed that numerous Möbius minima exist within 10 kcal/mol of the global minimum. Copyright © 2012 John Wiley & Sons, Ltd.