The thermal behaviour of bovine-brain myelin membrane has been studied by high-sensitivity differential scanning calorimetry, Fourier-transform infrared spectroscopy and thermal gel analysis. Spectroscopic results indicate that protein transitions take place between 60 degrees C and 90 degrees C, while thermal gel analysis has provided the thermal denaturation profiles of myelin proteolipid, DM-20 protein and the Wolfgram Fraction. An irreversible calorimetric transition centred at 80.3 +/- 0.2 degrees C with a specific enthalpy of 4.7 +/- 0.6 J/g of total protein has been assigned to the thermal denaturation of myelin proteolipid and DM-20 protein. The effects of the myelin storage conditions, scan rate, ionic strength and pH on this calorimetric transition have also been investigated. The thermal transition of the proteolipid practically disappears after treatment of the myelin with different amounts of chloroform-methanol 2:1 (v/v), a treatment which is generally used in proteolipid purification. On the other hand, the addition of several detergents to myelin only causes minor modifications to this transition, which then occurs at about 70 degrees C, with a specific enthalpy of between 2.5 and 3.6 J/g of total protein. These results appear to show that detergents preserve the native conformation of the proteolipid far more than do organic solvents. Hence the use of detergents would seem to be the appropriate method for proteolipid purification.