2020
DOI: 10.1108/mmms-05-2020-0118
|View full text |Cite
|
Sign up to set email alerts
|

The thermomechanical response of a poroelastic medium with two thermal relaxation times

Abstract: Purpose–The purpose of this paper is to study the wave propagation in a porous medium through the porothermoelastic process using the finite element method (FEM).Design/methodology/approachOne-dimensional (1D) application for a poroelastic half-space is considered. Due to the complex governing equation, the finite element approach has been adopted to solve these problems.FindingsThe effect of porosity and thermal relaxation times in a porothermoelastic material was investigated.Originality/valueThe numerical r… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
4
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
4

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 41 publications
(36 reference statements)
0
4
0
Order By: Relevance
“…By replacing the new expressions for the mass coefficients in (6) where α(ω) is given by (7) in the system of Equation ( 1), the motion equations becomes the following:…”
Section: Modified Biot Theorymentioning
confidence: 99%
See 1 more Smart Citation
“…By replacing the new expressions for the mass coefficients in (6) where α(ω) is given by (7) in the system of Equation ( 1), the motion equations becomes the following:…”
Section: Modified Biot Theorymentioning
confidence: 99%
“…As it is known, bone is an inhomogeneous porous material [5][6][7][8][9] and the determination of its characteristics by means of ultrasound techniques can be a game-changer in the diagnosis of osteoporosis since its elastic properties affect acoustic propagation. Within this context, several studies have been conducted on cancelous and trabecular bone [10][11][12][13].…”
Section: Introductionmentioning
confidence: 99%
“…Following Abbas and Hobiny [23] with Ezzat and Karamany [29][30][31], the basic equations of porothermoelastic media in the absence of physical forces and the thermal source are expressed as: Motion equations…”
Section: Basic Equationsmentioning
confidence: 99%
“…Hobiny [22] studied the impacts of relaxation time and porosity in porothermoelastic materials under a hybrid finite element method. Abbas and Hobiny [23] studied the thermomechanical responses of a poroelastic material with time delays. Alzahrani and Abbas [24] studied generalized thermoelastic interactions in a poroelastic medium without energy dissipation.…”
Section: Introductionmentioning
confidence: 99%