Epoxidized rubber seed oil (4.5% oxirane content, ERSO) was prepared by treating the oil with peracetic acid generated in situ by reacting glacial acetic acid with hydrogen peroxide. The thermal behavior of the ERSO was determined by differential scanning calorimetry. The effect of the epoxidized oil on the thermal stability of poly (vinyl chloride) (PVC) plastigels, formulated to contain dioctyl phthalate (DOP) plasticizer and various amounts of the epoxidized oil, was evaluated by using discoloration indices of the polymer samples degraded at 1608C for 30 min and thermogravimetry at a constant heating rate of 108C/min up to 6008C. The thermal behavior of the ERSO was characterized by endothermic peaks at about 1508C, which were attributed to the formation of network structures via epoxide groups, and at temperatures above 3008C, which were due to the decomposition of the material. Up to 50% of the DOP plasticizer in the PVC plastisol formulation could be substituted by ERSO without a marked deleterious effect on the consistency of the plastigel formed. In the presence of the epoxidized oil, PVC plastigel samples showed a marked reduction in discoloration and the number of conjugated double bonds, as well as high temperatures for the attainment of specific extents of degradation. These results showed that the ERSO retarded/inhibited thermal dehydrochlorination and the formation of long (n > 6) polyene sequences in PVC plastigels. The plasticizer efficiency/permanence of ERSO in PVC/DOP plastigels was evaluated from mechanical properties' measurements, leaching/migration tests, and water vapor permeability studies. The results showed that a large proportion of DOP could be substituted by ERSO in a PVC plastisol formulation without deleterious effects on the properties of the plastigels.